DGEO Sommersemester 2019 alpha version, ohne Gewähr

Dozent: Satz: Version:

Inhaltsverzeichnis

Erinnerungen an WS	1
Übung 1 Beispiel	3
Integration auf Mannigfaltigkeiten	7
Das Tensorprodukt	9
Definition: Tensorprodukt	9
Lemma: Eindeutigkeit des Tensorprodukts $V \otimes W$	9
Existenz von $V \otimes W$	10
Lemma	11
Homomorphismen und Dualräume: (Erinnerung aus LAAG)	12
Proposition	12
Korollar	13
Korollar	14
Definition Tensor	14
Proposition	14
Korollar	14
Tensorprodukte von Vektorräumen	15
Proposition	15
Tensorprodukte von Vektorräumen	16
Äußere Potenzen, äußere Algebra	17
Definition	18
Proposition	18
Äußere Potenzen, äußere Algebra	19
Compiled on 16. April 2019	

Erinnerungen an WS

Wir studieren Mannigfaltigkeiten (Mfg).

 \approx topologische Räume, die lokal wie \mathbb{R}^n aussehen + glatte Strukturen von glatten Abbildungen zu sprechen.

Konkret: um jeden Punkt $p \in M$ gibt es eine Umgebung $U \ni p$ zusammen mit einer Karte $x \colon U \to \mathbb{R}^n$

Idee: da M lokal wie \mathbb{R}^n aussieht, versucht man, Objekte aus der Analysis auch auf M zu verstehen.

Wichtig dabei: das Objekt auf M muss koordinatenunabhängig werden! (Physik verlangt das auch!)

1. Tangentialraum "über" jedem Punkt $p \in M$ "hängt" ein Vektorraum T_pM , dim $T_pM = \dim M$ Elemente von T_pM heißen Tangentialvektoren.

$$T_pM = \{ \text{Ableitungen von Funktionen an } p \}$$

= $\{ \partial \colon C^{\infty}(M) \to \mathbb{R} \text{ linear } | \partial (fg) = f(p) \cdot \partial (g) + g(p) \cdot \partial (f) \}$

Motto: Tangentialvektor $\hat{=}$ Richtungsableitung!

$$\pi \colon TM \to M \text{ ist glatt } v \in T_pM \mapsto p$$

Nutzen: wir verstehen "wirklich", was Ableitungen sind

Früher:

$$f \in C^{\infty}(\mathbb{R}^m, \mathbb{R}^n) \quad \leadsto \quad D_p f \in \mathbb{M}_{n \times m}(\mathbb{R})$$
$$D f \in C^{\infty}(\mathbb{R}^m, \mathbb{M}_{n \times m}(\mathbb{R}))$$

Jetzt in Diffgeo:

$$f \in C^{\infty}(M,N) \underset{p \in M}{\leadsto} D_p f \colon T_p M \to T_{f(p)} N$$
 linear

2. ODEs als Flüsse von Vektorfeldern

Vektorfeld: $X: M \to TM$ mit $\pi \circ X = id_M \ (\Leftrightarrow X(p) \in T_pM)$ Gegeben $X \leadsto \Phi \colon \underset{\subset \mathbb{R} \times M}{W} \to M$ (Fluss des Vektorfeldes)

s.d.
$$\forall p \in M \ \gamma_p(t) := \Phi(t, p) \ \text{die ODE}$$

$$\dot{\gamma}(t) = X(\gamma(t))$$

lässt

3. Lie-Klammer von Vektorfeld und Lie-Gruppen Auf Vektorfeldern auf M ergibt es eine interessante algebraische Struktur: die Lie-Klammer: gegeben $X,\,Y\in\underbrace{\Gamma(TM)}_{Vektorfeld}\leadsto [X,Y]\in\Gamma(TM)$

 $(\Gamma(TM), [\cdot, \cdot])$ wird zu einer Lie-Algebra.

Def. Eine Lie-Algebra $(V,[\cdot,\cdot])$ ist ein Vektorraum V mit einer bilinearen Abbildung $[\cdot,\cdot]:V\times V\to V$ mit folgenden Eingenschaften:

(a) $[X, Y] = -[Y, X], X, Y \in V$

(b) Jacobi-Identität: $X, Y, Z \in V$:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Beispiele:

(a) $\Gamma(TM)$, $[\cdot,\cdot]$ ist eine Lie-Algebra

(b) $\mathbb{M}_u(\mathbb{R})$, [A, B] = AB - BA ist eine Lie-Algebra

Verbindung zwischen a) und b) – Lie-Gruppen Lie-Gruppe = Mannigfaltigkeit und Gruppe (auf kompatible Weise) Multiplikation, Inversion glatt.

$$G \text{ Lie-Gruppe} \leadsto \text{Lie}(G) = 2(G) = \{X \in \Gamma(TG) \mid \underbrace{(Lg)_*}_{(Lg)_{*,p} = D_pLg} X = X\} = \underbrace{(Lg)_*}_{(Lg)_{*,p} = D_pLg} X = X\}$$

 $\{x \mid x \text{ linksinvariantes Vektorfeld }\}$

 \rightarrow Lie-Algebra bzgl. $[\cdot, \cdot]$, heißt Lie-Algebra von G.

Eigenschaften: $Lie(G) \cong T_1G$ als Vektoraum $\Rightarrow \dim_{\mathbb{R}} Lie(G) = \dim G$

$$\begin{array}{ccc} Lg\colon G & \to & G \\ & h & \mapsto & g\cdot h \end{array}$$

Satz
$$G = GL(n, \mathbb{R}) \subset_{\text{offen}} \mathbb{M}_n(\mathbb{R})$$

$$\operatorname{Lie}(G) \cong T_1G \underset{\operatorname{Vektoraum}}{\cong} \mathbb{M}_n(\mathbb{R})$$

Dies ist auch ein Isomorphismus zwischen Lie-Algebren!

$$(\operatorname{Lie}(\operatorname{GL}(n,\mathbb{R})), [\cdot,\cdot]) \cong (\mathbb{M}_n(\mathbb{R}), [\cdot,\cdot])$$

Für jedes $G < \operatorname{GL}(n,\mathbb{R})$ ist dann $\operatorname{Lie}(G) \subseteq (\mathbb{M}_n(\mathbb{R}),[\cdot,\cdot])$.

$$[A, B] = AB - BA$$

Übung 1

Differential einer Abbildung

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$p \in \mathbb{R}^n$$
 $D_p f \colon \mathbb{R}^n \to \mathbb{R}^m (\text{linear})$

$$v \mapsto \underbrace{\partial_v f(p)}_{=D_p f(v)}$$

$$\partial_v f(p) = \sum_{i=1}^n \frac{\partial f}{\partial x^i} \Big|_p v^i$$

$$D_p f = \sum_{\text{als Matrix}} \left(\frac{\partial f_i}{\partial x^j} \right)_i = \overline{1, m}$$

$$j = \overline{1, n}$$

$$f \colon M \to N$$

$$p \in M \leadsto D_p f \colon T_p M \to T_{f(p)} N \text{ linear}$$

$$v \mapsto (\underbrace{\varphi}_{C^{\infty}} \mapsto v(f^* \varphi)) = v(\underbrace{\phi \circ f}_{\in C^{\infty}(M)})$$

 $v \triangleq \text{Ableitungsoperation} \ (v \colon C^{\infty}(M) \to \mathbb{R}) \ \text{mit} \ v(fg) = f(p)v(g) + g(p)v(f)$

$$M \xrightarrow{f} N \xrightarrow{\varphi} \mathbb{R}$$

$$f^*\varphi$$

TODO Bildchen

$$\begin{array}{ccc} M & \xrightarrow{f} & N \\ & & & & \\ C^{\infty}(N) & \xrightarrow{f^*} & C^{\infty}(M) \text{ linear, sogar Algebrenhomomorphismus} \\ \varphi & \mapsto & \varphi \circ f \end{array}$$

Jeder Tangentialvektor v ist eine lineare Abbildung $v : C^{\infty}(M) \to \mathbb{R}$, dann ist $\underbrace{v \circ f^*}_{=D_{\pi(v)}f(v)=f_*v} : C^{\infty}(M) \to \mathbb{R}$ linear

Beispiel

$$G = U(n) = \{A \in \mathbb{M}_n(\mathbb{C}) \mid A^*A = 1\} \subseteq GL(n, \mathbb{C})$$

Sei
$$\gamma \colon (-\epsilon, \epsilon) \to G$$
 eine Kurve, $\gamma(0) = 1$
$$G = U(n) \Rightarrow \gamma(t)^* \cdot \gamma(t) = 1 \leftarrow \left. \frac{d}{dt} \right|_{t=0}$$

$$\dot{\gamma}(0)^*\gamma(0) \quad + \quad \gamma(0)^*\dot{\gamma}(0) = 0$$

$$\vdots$$

$$\dot{\gamma}(0)^* \quad + \quad \dot{\gamma}(0) = 0$$

Also:

$$T_1(G) \subseteq \{X \in \mathbb{M}_n(\mathbb{C}) \mid X^* = -X\}$$

Dazu: Zeige \supseteq betrachte:

$$\begin{split} \gamma(t) &:= e^{tX} \left(:= \sum_{k=0}^{\infty} \frac{t^k X^k}{k!} \right) \\ \gamma(t)^* &= e^{tX^*} = e^{-tX} \\ \gamma(t) * \gamma(t) &= e^{-tX} \cdot e^{tX} = 1 \Rightarrow \gamma(t) \in \mathrm{U}(n) \\ \dot{\gamma}(t) &= X e^{tX} \Rightarrow \dot{\gamma}(0) = X \end{split}$$

wie gewünscht. \Rightarrow Gleichheit

$$D_1 \det = (A \mapsto \operatorname{Trace}(A))$$

$$G = U(n) < \operatorname{GL}(n, \mathbb{R}) \operatorname{og} = \underline{u}(n) \subset \operatorname{gl}(n, \mathbb{R}) = \mathbb{M}_n(\mathbb{R})$$

Wir haben gesehen:

$$\begin{array}{ccc} \exp\colon & \text{og} & \to G \\ & & & \\ & & & \\ X & \mapsto \exp(X) \end{array}$$

$$\gamma(t) = e^{tX} = \exp(tX)$$

$$\dot{\gamma}(t) = Xe^{tX} = e^{tX} \cdot X = \gamma(t) \cdot X = \left(L_{\gamma(t)}\right)_* \underbrace{X}_{\in T_1G} = \tilde{X}(\gamma(t))$$

wobe
i \tilde{X} das linksinvariante Vektorfeld zu Xist

 $\Rightarrow \gamma(t)$ ist eine Integralkurve von \tilde{X}

Ausführlicher:

$$G \in \mathrm{GL}(m,\mathbb{R}) \subset \mathbb{M}_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$$

$$X \in T_1G \leadsto \underbrace{\tilde{X}(A)}_{\text{links invariantes VF}} = \underbrace{A}_{\in G} \cdot X \in T_AG \subseteq \mathbb{M}_n(\mathbb{R})$$

Eine Integralkurve $A(t) \in G$ von \tilde{X} erfüllt dann:

$$\dot{A}(t) = A(t) \cdot X$$

$$\leadsto$$
 mit $A(0) = 1 \leadsto A(t) = e^{tX}$

$$x \mapsto A \cdot x$$

$$f \colon \mathbb{R}^n \to \mathbb{R}^n \text{ linear}$$

$$\Rightarrow D_p f = f \colon \mathbb{R}^n \to \mathbb{R}^m$$

$$f: V \rightarrow W \text{ linear}$$

mit Übung 28 $p \in V$:

$$T_{p}V \xrightarrow{D_{p}f} T_{p}W$$

$$\parallel S \qquad \qquad \parallel S$$

$$V \xrightarrow{f} W$$

$$\det \gamma(t) = 1 \leftarrow \left. \frac{d}{dt} \right|_{t=0}$$

$$\det \colon \operatorname{GL}(n,\mathbb{R}) \to \mathbb{R}$$

$$D_1 \det \colon \mathbb{M}_n(R) \to \mathbb{R}$$

 $A \mapsto ? = \operatorname{Tr}(A)$

$$\det(1 + tA) = 1 + (?) + O(t^2)$$

Determinante ist Konjugationsinvariant

$$\det(1+tA) = \det(1+tBAB^{-1})$$

Wenn A diagonalisierbar ist folgt somit:

$$\det(1+tA) = \begin{vmatrix} 1+t\lambda_1 \\ & \ddots \\ & 1+t\lambda_n \end{vmatrix}$$

$$= (1+t\lambda_1)\cdots(1+t\lambda_n)$$

$$= 1+t(\lambda_1+\lambda_n)+O(t^2)$$

$$= 1+t\cdot\operatorname{Trace}(A)+O(t^2)$$

Integration auf Mannigfaltigkeiten

Suchen eines koordinateninvarianten Integrationsbegriffs

Betrachte n = 1:

 $U,\,V\subseteq\mathbb{R}$ offenen Intervalle. $\alpha\colon\underbrace{U}_{=(a,b)}\to V$ Diffe
o (= strikt monotone glatte Fkt.)

Transformationsformel:

$$\int_{\alpha(a)}^{\alpha(b)} f(\alpha(t))\alpha'(t) dt = \int_{a}^{b} f(t) dt$$

"Mnemonik":

$$dv = v'(u) du$$

$$f\colon V\to \mathbb{R}$$

$$\int_{U} (\alpha^{*}(f))(u)\alpha'(u) du = \int_{V} f(v) dv \neq \int_{V} \alpha^{*}(f)(t) dt$$

In \mathbb{R}^n :

$$\int_{U} \alpha^{*}(t)(\det D_{u}\alpha) d_{u_{1}} \cdots d_{u_{n}} = \int_{V} f(v) d_{v_{1}} \cdots d_{v_{n}}$$

$$\alpha: \quad U \longrightarrow V \text{ Diffeo}$$

$$(u_1, \dots, u_n) \mapsto (v_1, \dots, v_n)$$

v = v(u)

$$\int_{V} f(v) \, \mathrm{d}v_1 \, \mathrm{d}v_2$$

$$dv_1 = \frac{\partial v_1}{\partial u_1} du_1 + \frac{\partial v_1}{\partial u_2} du_2$$

$$dv_2 = \frac{\partial v_2}{\partial u_1} du_1 + \frac{\partial v_2}{\partial u_2} du_2$$

$$dv_1 dv_2 = \frac{\partial v_1}{\partial u_1} \frac{\partial v_2}{\partial u_1} \frac{\partial v_2}{\partial u_1} \frac{\partial v_1}{\partial u_1} \frac{\partial v_2}{\partial u_2} \frac{\partial v_2}{\partial u_2} \frac{\partial v_2}{\partial u_2} \frac{\partial v_2}{\partial u_1} \frac{\partial v_2}{\partial u_2} du_2 + \frac{\partial v_1}{\partial u_2} \frac{\partial v_2}{\partial u_2} du_2 + \frac{\partial v_1}{\partial u_2} \frac{\partial v_2}{\partial u_1} du_2 du_1 =: (*)$$

$$= \int_{V} f(v) \, dv_{1} \, dv_{2} = \int_{U} f(v(u)) \left(\underbrace{\frac{\partial v_{1}}{\partial u_{1}} \frac{\partial v_{2}}{\partial u_{2}} - \frac{\partial v_{1}}{\partial u_{2}} \frac{\partial v_{2}}{\partial u_{1}}}_{\text{sollte}} \right) du_{1} \, du_{2}$$

$$= \int_{V} f(v) \, dv_{1} \, dv_{2} = \int_{U} f(v(u)) \left(\underbrace{\frac{\partial v_{1}}{\partial u_{1}} \frac{\partial v_{2}}{\partial u_{2}} - \frac{\partial v_{1}}{\partial u_{2}} \frac{\partial v_{2}}{\partial u_{2}}}_{\text{sollte}} \right) du_{1} \, du_{2}$$

$$= \int_{V} f(v) \, dv_{1} \, dv_{2} = \int_{U} f(v(u)) \left(\underbrace{\frac{\partial v_{1}}{\partial u_{1}} \frac{\partial v_{2}}{\partial u_{2}} - \frac{\partial v_{1}}{\partial u_{2}} \frac{\partial v_{2}}{\partial u_{1}}}_{\text{out}} \right) du_{1} \, du_{2}$$

Damit die Mnemonik stimmt, muss also gelten:

$$du_1 \cdot du_1 = du_2 \cdot du_2 = 0$$

$$du_1 \cdot du_2 = -du_2 \cdot du_1 = 0$$

Erkenntniss:

Koordinatenfrei werden nicht Funktionen, sondern sogenannte Differentialformen integriert. Eine n-Differentialform auf \mathbb{R}^n ist (informell) ein Ausdruck

$$\omega = f(x) dx_1 \wedge \ldots \wedge dx_n$$

mit den Rechenregeln: wenn x = x(y) mit $y = (y_1, \dots, y_n)$ dann transformiert sich der Ausdruck zu

$$f(x(y)) \left(\frac{\partial x_1}{\partial y_1} \, \mathrm{d}y_1 + \ldots + \frac{\partial x_1}{\partial y_n} \, \mathrm{d}y_n \wedge \ldots \wedge \frac{\partial x_n}{\partial y_1} \, \mathrm{d}y_1 + \ldots + \frac{\partial x_n}{\partial y_n} \, \mathrm{d}y_n \right)$$

und es gilt:

$$T^*M \ni dy_i \wedge dy_j = -dy_j \wedge dy_i, \quad i, j = 1, \dots, n$$

folglich ist $\int \omega$ unabhängig von Koordinaten.

Ziel:

Das Tensorprodukt

ausgehend von einem Vektoraum $V(=T_pM,T_p^*M)$ einen Kalkühl zu entwickeln, welcher die Interpretation von Ausdrücken wie $\mathrm{d}x_1\wedge\ldots\wedge\mathrm{d}x_k$ mit Rechenregeln $\mathrm{d}x_i\wedge\mathrm{d}x_j=\mathrm{d}x_j\wedge\mathrm{d}x_i$ erlaubt.

Das wird durch Theorie von Tensorprodukten und multilinie
aren (z.B. det: $\underbrace{\mathbb{R}^n \times \ldots \times \mathbb{R}^n}_{n\text{-mal}} \to \mathbb{R}$) Abbildungen gemacht

Hauptidee: eine multilinieare Abbildung $f: V_1 \times \ldots \times V_n \to W$. Es reicht diese Idee für bilineare Abbildungen zu realisieren. (dann wiederholt man es)

Definition: Tensorprodukt

Ein Vektoraum $V\otimes W$ zusammen mit einer bilinearen Abbildung $i\colon V\times W\to V\otimes W$ heißt Tensorprodukt von V und W, wenn für jede bilineare Abbildung $f\colon V\times W\to Z$, (Z beliebiger Vektoraum) eine eindeutige lineare Abbildung $\bar f\colon V\otimes W\to Z$ existiert mit $\bar f\circ i=f$ (genannt universelle Eigenschaften)

$$V\times W \xrightarrow{i} V\otimes W$$

$$\downarrow_{\exists!\bar{f}}$$

$$Z$$

Lemma: Eindeutigkeit des Tensorprodukts $V \otimes W$

Wenn $V \otimes W$ existiert, dann ist es eindeutig bis auf einen eindeutigen Isomorphismus.

Beweis:

$$V + W \xrightarrow{i_1} (V \otimes W)_1$$

$$\downarrow_{i_2} \qquad \qquad \downarrow_{\exists ! f_1} \qquad \exists ! f_2 \qquad \qquad \downarrow_{\downarrow}$$

$$(V \otimes W)_2$$

Die universelle Eigenschaft von $(V \otimes W)_1$ liefert $f_1 : (V \otimes W)_1 \to (V \otimes W)_2$ mit $f_1 \circ i_1 = i_2$.

Die universelle Eigenschaft von $(V \otimes W)_2$ liefert $f_2 \colon (V \otimes W)_2 \to (V \otimes W)_1$ mit $f_2 \circ i_2 = i_1$.

Beh. f_1, f_2 sind invers zueinander. Betrachte z.B.: $f_1 \circ f_2$

Wegen der Eigenschaften in der Definition von $(V \otimes W)_2$ ist $f_1 \circ f_2 = \mathrm{id}_{(V \otimes W)_2}$. Analog gilt $f_2 \circ f_1 = \mathrm{id}_{(V \circ W)_1}$

Existenz von $V \otimes W$

Idee: $V \otimes W$ soll von Ausdrücken der Form $v \otimes w$, $v \in V$, $w \in W$ aufgespannt werden und $v \otimes w$ soll linear in V und W sein.

Definition: Sei X eine Menge. Der freie (reelle) Vektoraum auf X, $\mathcal{F}_{\mathbb{R}}(X)$, ist der (reelle) Vektoraum mit Basis X.

$$\mathcal{F}_{\mathbb{R}}(X) \cong \{ f \colon X \to \mathbb{R} \mid f(x) \neq 0 \text{ für endlich viele } x \in X \}$$

$$V \otimes W := \mathcal{F}(V \times W) / \left\{ \begin{matrix} (v_1 + v_2, w) - (v_1, w) - (v_2, w), v_1, v_2 \in V, w \in W \\ (v, w_1 + w_2) - (v, w_1) - (v, w_2), v \in V, w_1, w_2 \in W \\ (\lambda v, w) - \lambda(v, w) \\ (v, \lambda w) - \lambda(v, w) \end{matrix} \right\} v \in V, w \in W, \lambda \in \mathbb{R}$$

Sei

$$\begin{array}{ll} i\colon & V\times W & \to V\otimes W \\ & (v,w) & \mapsto [(v,w)] =: v\otimes w \end{array}$$

Diese Definition heißt, dass folgende Rechenregeln gelten:

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$

$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$

$$\lambda(v \otimes w) = v \otimes \lambda w = \lambda v \otimes w, \quad v_1, v_2 \in V, w_1, w_2 \in W, \lambda \in \mathbb{R}$$

$$\langle \cdot \rangle = \operatorname{span}(\cdot)$$

wenn E ein Vektoraum ist, $E'\subseteq E$ Untervektorraum, dann ist $E/E'=\{e+E'\mid e\in E\}$ mit mengenmäßiger Addition und Skalarmultiplikation. (bei uns ist $E=\mathcal{F}(V\times W),\,E'=\langle\ldots\rangle$)

Interpretation: E/E'= Vektoraum der Äquivalenzklassen von Vektoraum in E modulo E'. (e'=0, $e'\in E'$) Entsprechend ist

$$V \otimes W = \operatorname{span} \{ \underbrace{v \otimes w}_{=[(v,w)]} \mid v \in V, w \in W \}$$

mit den Relationen:

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$

$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$

$$\lambda(v \otimes w) = v \otimes \lambda w = \lambda v \otimes w, \quad v_1, v_2 \in V, w_1, w_2 \in W, \lambda \in \mathbb{R}$$

Lemma

Die angegebene Konstruktion von $V \otimes W$ erfüllt die universelle Eigenschaft.

Beweis:

Sei $f \colon V \times W \to Z$ gegeben, bilinear

Definiere

$$\hat{f} \colon V \times W \to Z$$
, linear
$$\sum_{i=1}^{k} \lambda_i(v_i, w_i) \mapsto \sum_{i=1}^{k} \lambda_i f(v_i, w_i)$$

Behauptung: \hat{f} induziert eine lineare Abbildung \bar{f}

$$\bar{f} \colon V \otimes W \to Z$$
 $(v \otimes w) \mapsto \hat{f}((v, w))$

Dazu muss man überprüfen, dass $(v_1 + v_2, w) - (v, w) - (v_2, w)$ sowie andere Relationen von irgendwas oben im Kern von \hat{f} liegen. Das ist dadurch gewährleistet, dass f bilinear ist, z.B.

$$\hat{f}((v_1 + v_2, w) - (v_1, w) - (v_2, w))$$

$$\stackrel{\text{Def. } \hat{f}}{=} f \qquad f(v_1 + v_2, w) - f(v_1, w) - f(v_2, w)$$
Bilinearität von f

$$= 0$$

 $\Rightarrow \bar{f}$ erfüllt dann $\bar{f}(v \otimes w) = f(v, w) \Rightarrow V \otimes W$ erfüllt die universelle Eigenschaft.

Homomorphismen und Dualräume: (Erinnerung aus LAAG)

 $V,\ W$ Vektorräume $\leadsto Hom(V,W) = \{f\colon V \to W \mid f \text{ linear }\}$ ist selbst ein Vektoraum, wenn $V,\ W$ endlichdimensional $\Rightarrow \dim \operatorname{Hom}(V,W) = \dim V \cdot \dim W$ $(\operatorname{Hom}(V,W) \cong \mathbb{M}(m \times n,\mathbb{R}), \text{ wenn } V \cong \mathbb{R}^n,\ W \cong \mathbb{R}^m)$

 $V^* := \operatorname{Hom}(V,\mathbb{R}) \text{ ist dann der Dualraum von } V. \text{ Wenn } \{e_i\}_{i=1}^n \text{ eine Basis in } V \text{ ist, dann gibt es die duale Basis } \{\alpha_j\}_{j=1}^n \subset V^* \text{ mit: } \alpha_j(e_i) := \delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$

Schließlich ist für V < ∞ die Einbettung $i\colon V\to V^{**},\ v\mapsto (\alpha\mapsto\alpha(v))$ ein Isomorphismus

Proposition

 $W\otimes V^*$ ist kanonisch isomorph zu $\operatorname{Hom}(V,W)$ für endlichdimensionale $V,\,W.$ Insbesondere gilt dann:

$$\dim W \otimes V^* = \dim W \cdot \dim V = \dim W \otimes V$$

Mehr: wenn $\{f_j\}_{j=1}^m$ und $\{e_i\}_{i=1}^n$ Basen in W bzw. V sind. Dann ist $\{f_j \otimes e_i\}_{i=1,\dots,n;j=1,\dots,m}$ eine Basis in $W \otimes V$

Beweis:

Sei $L: W \times V^* \to \operatorname{Hom}(V, W), (w, \alpha) \mapsto (\theta_{w,\alpha}: v \mapsto \alpha(v) \cdot w), (\theta_{w,\alpha} \operatorname{Rang} 1- \operatorname{Operator definiert durch } \alpha, w)$

L ist bilinear, weil:

$$(L(w_{1} + \lambda w_{2}, \alpha_{1} + \mu \alpha_{2}))(v)$$

$$= (\alpha_{1} + \mu \alpha_{2})(v) \cdot (w_{1} + \lambda w_{2})$$

$$= \underbrace{\alpha_{1}(v)w_{1}}_{L(w_{1},\alpha_{1})(v)} + \underbrace{\mu \alpha_{2}(v)w_{1}}_{L(w_{1},\alpha_{2})(v)} + \underbrace{\lambda}_{L(w_{2},\alpha_{1})(v)} + \underbrace{\mu \lambda}_{L(w_{2},\alpha_{2})(v)} \underbrace{\alpha_{2}(v) \cdot w_{2}}_{L(w_{2},\alpha_{2})(v)}$$

Nach der universellen Eigenschaft vom Tensorprodukt bekommen wir eine lineare Abbildung

$$\bar{L} \colon W \otimes V^* \to \operatorname{Hom}(V, W)$$

 $w \otimes \alpha \mapsto \theta_{w,\alpha}$

 \bar{L} ist ein Isomorphismus: geben wir das Inverse an. Sei $\{e_i\}_{i=1}^n$ eine Basis on V, $\{\alpha_i\}_{i=1}^n$ die duale Basis in V^* . Definiere

$$\varphi \colon \operatorname{Hom}(V, W) \to W \otimes V^*$$

$$T \mapsto \sum_{i=1}^n T(e_i) \otimes \alpha_i$$

$$\varphi \circ \bar{L}(w \otimes \alpha) = \varphi(\theta_{w,\alpha})$$

$$= \sum_{w,\alpha} (e_i) \otimes \alpha_i$$

$$= \sum_{i=1}^n \alpha(e_i) w \otimes \alpha_i$$

$$= w \otimes \left(\sum_{i=1}^n \alpha(e_i) \cdot \alpha_i\right)$$

$$= w \otimes \alpha$$

$$\Rightarrow \varphi \circ \bar{L} = id$$

$$(\bar{L} \circ \varphi(T)(v)) = \sum_{i=1}^{n} \theta_{T(e_i),\alpha_i}(v)$$

$$= \sum_{i=1}^{n} \alpha_i(v)T(e_i)$$

$$= T\left(\sum_{i=1}^{n} \alpha_i(v)e_i\right)$$

$$= T(v)$$

$$\Rightarrow \bar{L} \circ \varphi = \mathrm{id}$$

 $W\otimes W$ ist nach Konstruktion aufgespannt durch $f_j\otimes e_i$, dim $W\otimes V=\dim W\cdot\dim V\Rightarrow \{f_j\otimes e_i\}$ ist eine Basis.

Korollar

Wenn X, Y endliche Mengen sind, dann gilt:

$$\mathcal{F}(X \times Y) \cong \mathcal{F}(X) \otimes \mathcal{F}(Y)$$

Erinnerung: hier gilt $\mathcal{F}(X) = \{f \colon X \to \mathbb{R}\}$ mit punktweisen Operationen

Korollar

$$W \otimes V \cong V \otimes W, W \otimes (V \otimes Z) = (W \otimes V) \otimes Z$$

Bemerkung: Es gilt auch ohne Einschränkung auf Dimensionen

Definition Tensor

Ein Tensor vom Typ (r, s) (zum Vektoraum V) ist ein Element des Vektoraumes

$$T_{r,s}(V) := V \underbrace{\otimes \ldots \otimes V}_{r-\text{mal}} \otimes \underbrace{V^* \otimes \ldots \otimes V^*}_{s-\text{mal}}$$

Bemerkung: Wenn $\{e_i\}_{i=1}^n$ eine Basis in $V, \{\alpha_i\}_{i=1}^n \subset V^*$ duale Basis. \leadsto

$$\{e_{i_1} \otimes \ldots \otimes e_{i_r} \otimes \alpha_{j_1} \otimes \ldots \otimes \alpha_{j_r} \mid i_1, \ldots, i_r, j_1, \ldots, j_s \in \{1, \ldots, n\}\}$$

ist eine Basis in $T_{r,s}$ (Beweis: wende induktiv die Proposition an).

 \Rightarrow jedes $T \in T_{r,s}(V)$ ist darstellbar also

$$T = \sum_{i_1, \dots, i_r, j_1, \dots, j_s \in \{1, \dots, n\}} T_{j_1, \dots, j_s}^{i_1, \dots, i_r} (e_{i_1} \otimes \dots \otimes e_{i_r} \otimes \alpha_{j_1} \otimes \dots \otimes \alpha_{j_s})$$

Beispiel $T_{1,1}(V) = V \otimes V^* \cong \operatorname{Hom}(V,V) = \operatorname{End}(V)$ d.h., elemente von $T_{1,1}$ kann man als lineare Abbildung von V nach V interpretieren. Multilinear heißt linear in jeder Komponente. Sei

$$M_{s,r}(V) := \{ f : \underbrace{V \times \ldots \times V}_{s\text{-mal}} \times \underbrace{V^* \times \ldots \times V^*}_{r\text{-mal}} \to \mathbb{R} \mid f \text{ multiliniear } \}$$

Proposition

 $T_{r,s}(V)$ ist kanonisch isomorph zu $M_{s,r}(V)$

Korollar

$$Bil(V) = \{b \colon V \times V \to \mathbb{R} \text{ biliniear}\} \cong V^* \otimes V^*$$

Insbesondere ist ein Skalarpodukt auf V ein Tensor vom Typ (0,2) Notation $g_{i,j}$ für Koordinaten einer Metrik ist konstant mit Tensorprodukten.

Tensorprodukte von Vektorräumen

$$\operatorname{Hom}(V \otimes \underbrace{W}_{\mathbb{R}}) \cong \operatorname{Bil}(V \times W, \underbrace{Z}_{\mathbb{R}})$$

 $\overset{\text{Induktion}}{\Rightarrow} \quad \text{Hom}(V_1 \otimes \ldots \otimes V_n, Z) \cong \{f \colon V_1 \times \ldots \otimes V_n \to Z \mid f \text{ multiliniear } \}$

Letzes mal:

$$T_{r,s}(V) := \underbrace{V \otimes \ldots \otimes V}_{r\text{-mal}} \times \underbrace{V^* \times \ldots \times V^*}_{s\text{-mal}}$$

$$M_{s,r} := \{ f \colon \underbrace{V \otimes \ldots \otimes V}_{s\text{-mal}} \times \underbrace{V^* \times \ldots \times V^*}_{r\text{-mal}} \to \mathbb{R} \mid f \text{ multiliniear } \}$$

Proposition

$$T_{r,s}(V) \stackrel{kan.}{\cong} M_{s,r}(V)$$

Beweis:

Nach obigen Eigenschaften gilt:

$$M_{s,r} \cong \operatorname{Hom}(T_{s,r}(V), \mathbb{R}) \cong t_{s,r}(V)^* = (V^* \otimes \ldots \otimes V^* \otimes V \otimes \ldots \otimes V)^*$$

$$\stackrel{?}{\cong} \underbrace{V \otimes \ldots \otimes V}_{r\text{-mal}} \otimes \underbrace{V^* \otimes \ldots \otimes V^*}_{s\text{-mal}}$$

Wir wollen also zeigen: W, Z zwei Vektoräume, wollen zeigen, dass $W^* \cong Z$ $(W = T_{s,r}(V), Z = T_{r,s}(V))$

Def./Erinnerung:

Eine nichtsinguläre Paarung zwischen $W,\,Z$ ist eine bilineare Abbildung $\beta\colon W\times Z\to\mathbb{R}$ mit

- $\beta(W,Z) = 0 \ \forall Z \in Z \Rightarrow w = 0$
- $\beta(W,Z) = 0 \ \forall w \in W \Rightarrow Z = 0$

Übung:

Wenn W, Z endlichdimensional, $(w_i)_{i=1}^n$, $(z_i)_{i=1}^m$ Basen in W bzw. Z dann ist β nichtsingulär $\Leftrightarrow (\beta(w_i, z_j))_{\substack{i=1,\dots,n\\j=1,\dots,m}}$ nicht ausgeartet ist $\Rightarrow n=m$

 β gibt einen Isomorphismus $\hat{\beta} \colon Z \to W^*$

Beispiel:

W=Z, euklidischer Raum mit Skalarpodukt $\langle \cdot, \cdot \rangle$

$$\beta(W, Z) = \langle \cdot, \cdot \rangle$$

Alos: Wir betrachten eine nichtsinguläre Paarung

$$\beta_i : T_{s,r}(V) \times T_{r,s}(V) \to \mathbb{R}$$

Definiere

$$\beta(v_1 \otimes \ldots \otimes v_s \otimes v_1^* \otimes \ldots \otimes v_r^*, v_1 \otimes \ldots \otimes u_r \otimes u_1^* \otimes \ldots \otimes u_s^*)$$

$$= \Pi_{i=1}^r v_i^*(u_i) \cdot \Pi_{j=1}^s u_j^*(v_j)_s \text{ bilinear fortgesetzt}$$

Tensorprodukte von Vektorräumen

Zu zeigen ist, dass β nicht ausgeartet ist. Dazu sei $0 \neq t \in T_{r,s}(V)$, wir suchen $t^* \in T_{s,r}(V)$ mit $\beta(t^*,t) \neq 0$

Sei $(e_i)_{i=1}^n$ eine Basis in V, $(\alpha)_{i=1}^n$ die Dualbasis in V^*

Dann gilt:

$$t = \sum_{\substack{i_1, \dots, i_r \in \{1, \dots, n\} \\ j_1, \dots, j_s \in \{1, \dots, n\}}} t_{j_1, \dots j_s}^{i_1 \dots i_r} e_{i_1} \otimes \dots \otimes e_{i_r} \otimes \alpha_{j_1} \otimes \dots \otimes \alpha_{j_s}$$

 $D_a t \neq 0$, ist eins von den Koeffizienten $\neq 0$:

$$0 \neq t_{j_1 \cdots j_s}^{i_1 \cdot i_r} = \beta(\alpha_{i_1} \otimes \ldots \otimes \alpha_{i_r} \otimes e_{j_1} \otimes \ldots \otimes e_{j_s}, t)$$

Bemerkung: Die Paarung zwischen $T_{r,s}$ mal $T_{s,r}$ wird gelegentlich einfach durch $\langle \cdot, \cdot \rangle$ oder (\cdot, \cdot) bezeichnet.

Beispiel $V=T_pM,\,(U,x)$ eine Karte um p, dann hat $V=T_pM$ eine Basis $\{\frac{\partial}{\partial x_i}\}_{i=1}^n$

 $V^* = T_p^* M$ bekommt die duale Basis $\{\mathrm{d} x^i\}_{i=1}^n$

Erinnerung:
$$dx^i(T_pM(v) := v(x^i))$$
, daher $dx^i(\frac{\partial}{\partial x^j}) = \frac{\partial}{\partial x^j}(x^i) = \delta_{ij}$

Wir bekommen jetzt z.B. (i, j fest)

1.
$$t_{ij} = \mathrm{d} x^i \otimes \mathrm{d} x^j \in V^* \otimes V^* = T_{0,2}(V) \cong T_{0,2}(V) \cong \mathrm{Bil}(V \times V, \mathbb{R})$$

$$t_{ij} = (dx^{i} \otimes dx^{j})(v, w)$$

$$= dx^{i}(v) \cdot dx^{j}(w)$$

$$= v(x^{i}) \cdot w(x^{j}), v, w \in T_{p}M$$

Beispiel:

$$g := \sum_{i=1}^{n} dx^{i} \otimes dx^{i}$$

ist auch eine Biliniarform auf T_pM . Wenn $M=\mathbb{R}^n,\,p$ beliebig, dann ist g das Standardskalarprodukt auf $T_p\mathbb{R}^n\cong\mathbb{R}^n$

$$g\left(\frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{l}}\right) = \sum_{i=1}^{n} \underbrace{\mathrm{d}x^{i} \left(\frac{\partial}{\partial x^{k}}\right)}_{=\delta_{ik}} \underbrace{\mathrm{d}x^{i} \left(\frac{\partial}{\partial x^{l}}\right)}_{=\delta_{il}}$$
$$= \delta_{kl} + \delta_{lk}$$
$$= \delta_{kl}$$

Äußere Potenzen, äußere Algebra

Errinnerung:

für Integrationstheorie wollen wir die Rechenregeln

$$d_x^i \wedge dx^j = -dx^j \wedge dx^i$$

Beobachtung: Tensoren kann man miteinander multiplizieren. Es gibt eine kanonische bilineare Abbildung

$$\underbrace{(V \otimes \ldots \otimes V)}_{k\text{-mal}} \times \underbrace{V \otimes \ldots \otimes V}_{l\text{-mal}} \to \underbrace{V \otimes \ldots \otimes V}_{(k+l)\text{-mal}}$$
$$((v_1 \otimes \ldots \otimes v_k), (v_{k+1} \otimes \ldots \otimes v_{k+l})) \mapsto (v_1 \otimes \ldots \otimes v_{k+l})$$

Notation:

$$V^{\otimes k} := \begin{cases} \underbrace{V \otimes \ldots \otimes V}_{k\text{-mal}} & k > 0 \\ \mathbb{R} & k = 0 \end{cases}$$

$$T(V) := \bigoplus_{k=0}^{\infty} V^{\otimes k}$$

heißt die Tensoralgebra von V

Multiplikation: $t \in V^{\otimes r}, t' \in V^{\otimes s}$

$$t \cdot t' := t \otimes t' \in V^{\otimes (r+s)}$$

definiert eine Multiplikation auf T(V)

In T(V) gelten die Relationen $v \otimes v = 0$ nicht.

Diese wollen wir erzwingen.

Sei $Z(V) = \langle v \otimes v | v \in V \rangle$ das Ideal in T(V) erzeugt von Elementen der Form

Notation:

$$I_r(V) := I(V) \cap V^{\otimes r}, I(V) = \bigoplus_{r=0}^{\infty} I_n(V)$$
 (kleine Übung)

Multiplikation wird durch \bigwedge bezeichnet. nach Konstruktion gilt $v_1 \wedge \ldots \wedge v_k =$ $[v_1 \otimes \ldots \otimes v_k]$

Definition

$$\bigwedge(V) := T(V)/I(V)$$

heißt äußere Algebra von V

Nach Konstruktion und Eigenschaft von I(V) gilt

$$\bigwedge(V) = \bigoplus_{r=0}^{\infty} \underbrace{\bigwedge_{V^{op?}/I_r(V)}^r}_{V^{op?}/I_r(V)}$$

- 1. $\wedge^0 V \cong \mathbb{R}$, weil $I_0(V) = \{0\}$ 2. $\wedge^1 V \cong V$, weil $I_1(V) = \{0\}$

Proposition

Sei (e_1, \ldots, e_n) eine Basis in V. Dann ist

$$\{e_{i_1} \wedge \ldots \wedge e_{i_k} \mid k \leq i_1 < i_2 < \ldots < i_k \leq n\}$$

eine Basis von $\bigwedge^k(V)$ (\leftarrow k-te äußere Potenz)

Insbesondere gilt:

$$\bigwedge^{k}(V) = \binom{n}{k}, \quad 0 \leqslant k \leqslant n, \quad \wedge_{k}(V) = \{0\}, \quad k > n$$

Äußere Potenzen, äußere Algebra

Beweis

Nach Konstruktion gilt: $e_i \wedge e_j = -e_j \wedge e_i$, daher spannt

$$\{e_{i_1} \wedge \ldots \wedge e_{i_k} \mid 1 \leqslant i_1 < i_k \leqslant n\}$$

den Raum $\bigwedge^k V.$ Wir brauchen also zu zeigen, dass

$$\sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \alpha_{i_1,\dots,i_k} e_{i_1} \wedge \dots \wedge e_{i_k} = 0$$

Sei $I = (i_1, \dots, i_k)$ $1 \leqslant i_1 < \dots < i_k \leqslant n$ fixiert.

Sei
$$J = \{1, ... n\} \setminus I = (j_1, ..., j_{n-k}) \ 1 \le j_1 < ... < j_k \le n$$

Betrachte das Element $e_{j_1} \wedge \ldots \wedge e_{i_k}$ und multipliziere es an (*):

$$\pm \alpha_{i_1,\dots,i_k} e_1 \wedge \dots \wedge e_n = 0$$

Alle anderen Terme verschwinden, weil eine Vektor im Produkt doppelt vorkommt.